液态金属快堆螺旋管蒸汽发生器一、二次侧耦合传热数值研究

Numerical study of coupled Heat Transfer between Primary and Secondary sides of Helical Coiled Tube Steam Generator for Liquid Metal Fast Reactor

作者:Li Min;Liu Jialun;Ning Liang;Lin Jinpeng;Xinjie;Li Huixiong
  • 创建日期:2024-04-01
  • 发布日期:2024-04-01
  • 最新更新日期:2024-04-09
简介:
查看更多>>螺旋管蒸汽发生器是液态金属快堆中能量传递的核心设备,其运行的稳定性、安全性对核电站的运行有至关重要的影响。为此本文构建了液态金属快堆螺旋管蒸汽发生器一次侧、二次侧耦合传热的三维数值模型,分别基于经济合作与发展组织核能署(The Organisation for Economic Co-operation and Development,OECD/NEA)物性手册和 NIST(National Institute of Standards and Technology)数据库建立液态金属和水-水蒸气变物性计算关联式,采用 Lee 相变模型计算二次侧水-水蒸气蒸发过程中两相间的质量传递。基于实验数据,分别对本文模型一次侧传热以及二次侧传热的计算可靠性进行了验证。最后以铅铋快堆为例,研究了不同一次侧进口参数下蒸汽发生器一、二次侧之间的耦合传热特性,并与传统水冷堆进行了对比。结果表明,在同等条件下,相比于传统水冷堆,一次侧采用铅铋液态金属时,一、二次侧之间的壁面热流密度明显提升,热流密度峰值可达 1439.97 kW·m-2,比水冷堆相应数值提升 5~6 倍,这导致二次侧管内气相蒸发过程明显加剧,体积含气率急剧上升;同时,一、二次侧之间的沿程热流密度分布更加不均匀,沿程热流密度分布相对偏差值比水冷堆相应数值增大 3~4 倍。随着一次侧进口铅铋温度从 350 ℃ 增大到450 ℃,一、二次侧之间的壁面热流密度随之增大,对应的热流密度峰值从950.7 kW·m-2 增大到 1439.97 kW·m-2,提升约 1.5 倍,同时一、二次侧之间的沿程热流密度分布更加不均匀,不均匀度增大 20 %。
CSTR31253.11.sciencedb.hjs.00017DOI10.57760/sciencedb.hjs.00017
数据文件下载

https://doi.org/null
浏览量| 下载量| 引用量数据协议
引用及导出

查看更多>>
Liu Jialun, Ning Liang, Lin Jinpeng, et al. Numerical study of coupled Heat Transfer between Primary and Secondary sides of Helical Coiled Tube Steam Generator for Liquid Metal Fast Reactor[DS/OL]. V2. Science Data Bank, 2024[2024-09-11]. https://doi.org/10.57760/sciencedb.hjs.00017. DOI:10.57760/sciencedb.hjs.00017.
引证网络
参考文献引证数据
1 蒋兴, 张明, 谢永诚, 等. 蒸汽发生器二次侧流场三维数值模拟[J]. 原子能科学技术, 2008, 42(2): 438-443.
2 王弘扬, 阮神辉, 文青龙, 等. 基于多孔介质模型的快堆蒸汽发生器热工水力特性数值研究[J]. 核动力工程, 2019, 40(5): 51-55. DOI: 10.13832/j.jnpe.2019.05.0051.
3 Dehbi A, Badredding H. CFD prediction of mixing in a steam generator mock-up: Comparison between full geometry and porous medium approaches[J]. Annals of Nuclear Energy, 2013, 58: 178-187. DOI: 10.1016/j.anucene.2013.03.019.
4 Wang C L, Cong T L, Qiu S Z, et al. Numerical prediction of subcooled wall boiling in the secondary side of SG tubes coupled with primary coolant[J]. Annals of Nuclear Energy, 2014, 63: 633-645. DOI: 10.1016/j.anucene.2013.09.006.
5 Cong T L, Tian W X, Su G H, et al. Three-dimensional study on steady thermohydraulics characteristics in secondary side of steam generator[J]. Progress in Nuclear Energy, 2014, 70: 188-198. DOI: 10.1016/j.pnucene.2013.08.011.
6 刘乐, 黄禹, 徐良旺. 蒸汽发生器二次侧两相流传热特性数值研究[J]. 核科学与工程, 2016, 141(5): 611-616. DOI: 10.3969/j.issn.0258-0918.2016.05.006.
7 赵宇, 孙宝芝, 鲍杰, 等. 螺旋管核态沸腾两相流摩擦压降与传热数值分析[J]. 原子能科学技术, 2018, 52(4): 590-599. DOI: 10.7538/yzk.2017.youxian.0426.
8 Wang M, Zheng M, Chao M, et al. Experimental and CFD estimation of single-phase heat transfer in helically coiled tubes[J]. Progress in Nuclear Energy, 2019, 112: 185-90. DOI: 10.1016/j.pnucene.2018.12.015
9 刘法钰, 张小英, 陈佳跃, 等. 螺旋管直流蒸汽发生器一、二次侧耦合传热特性分析[J]. 核动力工程, 2020, 41(5): 24-29. DOI: 10.13832/j.jnpe.2020.05.0024.
10 王正阳, 瞿叶高, 余晓菲, 等. 铅铋流体作用下螺旋管束的流致振动机理研究[J]. 核技术, 2021, 44(11):73-81. DOI: 10.11889/j.0253-3219.2021.hjs.44.110601.
11 王聪, 张巍, 李净松, 等. 螺旋管式直流蒸汽发生器壳侧流场数值模拟方法研究[J]. 核动力工程, 2021, 42(4): 171-175. DOI: 10.13832/j.jnpe.2021.04.0171.
12 赵后剑, 谢箫阳, 高伟凯, 等. 液态铅铋合金横掠管束对流换热数值计算[J]. 工程热物理学报, 2021, 42(7): 1837-1843.
13 杨宇鹏, 王成龙, 张大林, 等. 液态金属螺旋管式直流蒸汽发生器数值模拟研究[J]. 原子能科学技术, 2021, 55(7): 1288-1295. DOI: 10.7538/yzk.2020.youxian.0514.
14 丁雪友, 陈志强, 文青龙, 等. 铅铋快堆螺旋管直流蒸汽发生器热工水力特性数值研究[J]. 核动力工程, 2021, 42(4): 21-26. DOI: 10.13832/j.jnpe.2021.04.0021.
15 Niu X J, Luo S S, Fan L L, et al. Numerical simulation on the flow and heat transfer characteristics in the one-side heating helically coiled tubes[J]. Applied Thermal Engineering, 2016, 106: 579-587. DOI: 10.1016/j.applthermaleng.2016.05.167.
16 Qiu G D, Cai W H, Wu Z Y, et al. Numerical Simulation of Forced Convective Condensation of Propane in a Spiral Tube[J]. Journal of Heat Transfer, 2015, 137(4). DOI: 10.1115/1.4029475.
17 Mangini M, Pulvirenti B, Thome J R. Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel[J]. International Journal of Heat and Mass Transfer, 2013, 59: 451-471. DOI: 10.1016/j.ijheatmasstransfer.2012.12.010.
18 OECD/NEA. Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility[M]. Thermalhydraulics and Technologies. 2015. doi.org/10.1787/42dcd531-en.
19 Rickard C L, Dwyer O E, Dropkin D. Heat Transfer Rates to Cross-flowing Mercury in a Staggered Tube Bank[J]. Transactions of the American Society of Mechanical Engineers, 1958, 80: 642-652. DOI: 10.1115/1.4012465.
20 Santini L, Cioncolini A, Butel M T, et al. Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications[J]. International Journal of Heat and Mass Transfer, 2016, 92: 91-99. DOI: 10.1016/j.ijheatmasstransfer.2015.08.012.
21 Cinotti L, Bruzzone M, Meda N, et al. Steam Generator of the International Reactor Innovative and Secure[J]. American Society of Mechanical Engineers, 2002. DOI: 10.1115/ICONE10-22570.
暂无数据
数据来源
  • ScienceDB

  • 浏览量1
  • 点赞量0
  • 收藏量0
  • 引用量0
版本
V2 在线发布2024-04-01 00:00:00
数据集关联信息
数据使用许可
  • CC-BY-4.0

联系作者
  • 联系人:Ning Liang

    邮箱 : liangning1996@outlook.com